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Abstract

An experimental proof-of-concept test was conducted
to demonstrate reduction of rotor-stator interaction

noise through rotor-trailing edge blowing. The velocity
deficit from the viscous wake of the rotor blades was

reduced by injecting air into the wake from a trailing
edge slot. Composite hollow rotor blades with internal

flow passages were designed based on analytical codes
modeling the internal flow. The hollow blade with

interior guide vanes creates flow channels through
which externally supplied air flows from the root of the

blade to the trailing edge. The impact of the rotor wake-

stator interaction on the acoustics was also predicted
analytically.

The Active Noise Control Fan, located at the NASA

Glenn Research Center, was used as the proof-of-
concept test bed. In-duct mode and farfield directivity
acoustic data were acquired at blowing rates (defined as
mass supplied to trailing edge blowing system divided
by fan mass flow) ranging from 0.5 to 2.0%. The first
three blade passing frequency harmonics at fan

rotational speeds of 1700 to 1900 rpm were analyzed.
The acoustic tone power levels (PWL) in the inlet and
exhaust were reduced 11.5 and -0.1, 7.2 and 11.4, 11.8

and 19.4 PWL dB, respectively. The farfield tone
power levels at the first three harmonics were reduced

5.4, 10.6, and 12.4 dB PWL. At selected conditions,

two-component hotwire and stator vane unsteady
surface pressures were acquired. These measurements
illustrate the physics behind the noise reduction.

*Senior Aeroacoustics Researcher, Senior Member AIAA
*Aerospace Engineer
*Aerospace Engineer, Senior Member AIAA

.Acronyms and Symbols

AAPL Aero-Acoustic Propulsion Laboratory
ANCF Active Noise Control Fan

BPF blade passing frequency
C chord length
HP horse power
ins inserts

L/D length-to -diameter ratio
m circumferential mode order
n radial mode order

Mint integrated fan mass flow
opt optimum
PWL power level
r radial position
r/s rotor stator interaction
R duct radius

Rnom nominal radius to farfield mics

rpmc revolutions-per-minute, corrected
SPL sound pressure level

TERB Trailing Edge Rotor Blowing
U upwash velocity
V mean velocity

c_ mean flow angle

13 stator vane angle

(_ hub-to-tip-ratio

Introduction

The velocity deficit due to the viscous wakes of the

rotor blades is a prime component of rotor-stator
interaction noise. 1 The periodic wake disturbance

interacts with the stator causing unsteady surface
pressures on the stator vane that in turn couple to the
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duct acousticmodes.The strengthof the deficit
correlatesto the acousticlevels.It has been
demonstratedanalyticallythatreducingtheharmonic
contentof thewakewill havea substantialeffecton
reducingthetonecomponentofthefannoise.

Onemethodto reducethevelocitydeficitis tofill the
wakesbyinjectingairintothewakesfromaslotin the
trailingedge.Priorexperimentsusingrotortrailing
edgeblowingin ablow-downfacility:andinletguide
vanetrailingedgeblowing3haveshownthattiltingthe
wake throughtrailing edgeblowingreducesthe
harmoniccontentof thewakethatis responsiblefor
interactiontones.

Compositehollowrotorbladesweredesignedforthis
experimentwith interiorpassagesconsistingof a
plenumandguidevanesto createflow channels
throughwhichair is channeledfromtherootof the
bladetothetrailingedge.Theairforthisexperimentis
suppliedbyaseparateexternal3-lobedrotarypositive
displacementblower.Analytical codes were used to

determine the optimum shape of the internal passages
and predict the injected wake characteristics along the
blade span. The analytical codes also modeled the
mixing of the injected flow with the free stream. This

'mixed' wake profile was then used as input to an
analytical noise prediction code to determine the
optimum design-blowing rate.

The trailing edge slot created a thick or blunt trailing
edge that with no blowing, was unsuitable for baseline

noise measurements due to vortex shedding. Therefore,
a set of inserts that created a sharp trailing edge was
installed to more closely model a realistic rotor blade.

Although this extended the chord approximately 0.5 in.
(nominal chord, 5 in.) this effect was ignored and the
rotor blades with inserts were defined as the baseline
rotor for comparison.

Blowing rates (defined as mass flow injected at trailing
edge divided by fan mass flow) of 0.5 to 2.0% at fan

rotational speeds of 1500 to 1900 rpm were tested. In-

duct acoustic mode, two-component hotwire velocity,
stator vane surface unsteady pressure, farfield
directivity acoustic data, and fan flow performance data

were acquired. The optimum blowing rate for reducing
the tone noise was found to be between 1.6 and 1.8%.
In addition, a low blowing rate of about 0.5 to 0.6%

occurs due to the centrifugal force from the rotation.
For this paper, this is defined as self-blowing.

Experimental Apparatus

ANCF Test Bed

A proof-of-concept test was performed on the NASA

Glenn 48 in. Active Noise Control Fan 4 (ANCF). It is

located in the Aero-Acoustic Propulsion Laboratory
(AAPL) shown in figure l a. The ANCF is a ducted fan

used to test noise reduction concepts (figure l b). The
four foot diameter fan produces a tip speed of

--425 ft/sec resulting in a Blade Passing Frequency
(BPF) of approximately 500 Hz. A 16-bladed rotor in

combination with a variable stator vane count and
spacing produces the desired rotor-stator interaction

modal content. For the Trailing Edge Rotor Blowing
(TERB) test, 14 stator vanes at one-chord spacing were
used. This combination results in a single rotor-stator
interaction mode each at 1BPF and 2BPF, two modes at
3BPF.

Trailing Edge Blowing Rotor

The ANCF facility was chosen for this experiment

because the relatively low speed allows for a relatively
simple design. Sixteen composite hollow rotor blades
were installed in the ANCF for this experiment. A

photograph of the installed blades is shown in figure 1c.

The final blade construction is rather complex.
Figure 2a shows a model of the assembled blade with
the pressure side skin removed to illustrate the flow

passages. Figure 2b shows an exploded diagram of the
blade components. Each component is fabricated
separately. The base is axisymmetric to allow for fan
stagger changes and is fabricated from aluminum. The

internal flow channels are created by an internal
sintered part and the airfoil skins. The forward and aft

flow channel boundaries are contained in a single

component fabricated using laser-sintering techniques.
Blade skins are made of graphite/epoxy laminates. Final
assembly is completed through use of a cast mold that
locates and holds the components while adhesive is
cured to consolidate the components. The internal

geometry is critical in delivering the air to the trailing
edge with minimal losses. Care was taken to assure best
possible surface finishes on all wetted areas. In
addition, the base of each fan blade was matched to its
mating supply channel in the hub. The hub contained an

impeller device that accepted flow from the central
drive shaft, turned the flow radial, and delivered it to

the fan blade with the proper rotational velocity. A lug
on the base of each blade was matched to the top of

each impeller channel to fix the blade-setting angle.
Introducing the supply air through the facility drive
shaft allowed the injection air to be introduced into the

ANCF rig without affecting the existing flow path and
measurement envelopes leading to a cleaner research
assessment of the technology capability.

Installation on ANCF

The injection of mass flow through the rotor required a
delivery system. The rotor shaft was the obvious design
choice. An 8 in. diameter supply pipe and hose led from
a 3-lobed rotary positive displacement blower to the aft
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basesupportof therig.Thesinglepipewasspritinto
fourflexible4 in. diameterhoseswhichwerefurther
reducedto3in.beforeeachenterstheaftcenterbodyof
theANCFandfinallytheaftbearingmanifoldshownin
figure3a.Fourportsin theaftbearingmanifoldaccept
injectionairfromthe3in. flexiblehosesandsupplyit
to a circumferentialplenumthatsurroundsthedrive
shaft.Fromtheplenum,airenterstheshaftthroughfour
helicalslotsthatincludeangledsides,15°, tomatchthe
incomingflow angleat thedesignpointspeedand
injectionair Machnumberthroughthe slot. The
passageintheshaftis5in.diameter,reducingto3.6in.
attheentranceto theimpelleratthefightin figure3a.
Theimpeller(asinteredpartfor low cost)turnsthe
flow fromaxialto radial(andspinningat therotor
speed)anddividestheflow among16 rectangular
passagesofapproximately0.5in.thickby0.75in.wide
that supplyair to the baseof eachrotor blade
(figure3b).

Analytical Prediction Methodology

Flow

The ANCF/TERB rotor was designed using a modified
version of the NASA developed compressor design
program 5 in conjunction with a three-dimensional

viscous computational fluid dynamics (CFD) code for

turbomachinery, RVC3D. 6-8Through an iterative design
process, several key aerodynamic parameters needed by
the design code were obtained and adjusted based on

the CFD simulation results. In particular, the span wise
distributions of blade row total-pressure loss and exit
flow deviation angle (turning) were determined from
the CFD solutions. A two-dimensional viscous CFD

code, DVC2D, 9 was used to a limited extent, for

example, to simulate the flow field in the axisymmetric
inlet upstream of the rotor, providing inlet boundary
condition data for the rotor computational domain.

Since it was desirable to use the existing stator with the
TERB rotor, an RVC3D simulation was performed for
the stator using flow conditions obtained from the rotor

simulation. These results indicated that the existing
stator would work well with the TERB rotor.

Simulations of the TERB ANCF rotor were performed
using the RVC3D code augmented with a one-
dimensional flow model for the TERB flow

characteristics. The one-dimensional model provided
span wise distributions of total-pressure, total-

temperature, and flow direction for the TERB jet, based
on flow conditions specified at the rotor center line
where the TERB supply flow enters the rotor and was
assumed to have known conditions. The model included

the effects of rotation (centrifugal pumping, work) on the
TERB air flowing through the hollow rotor disk and

blades, as well as the total-pressure losses associated

with those internal channel flows. Estimates of the total-

pressure losses were obtained largely from DVC2D and
RVC3D simulation results for portions of the internal

flow passages and guide vane array. The resulting
simulated (external) rotor flow field includes the TERB

jet emitting from a narrow trailing-edge slot of varying
width and extending over most of the blade span.

All rotor CFD simulations, with and without TERB,
implemented the Baldwin-Lomax turbulence model 1°

for the effects of boundary layer and wake turbulence.
In addition to providing valuable assessments of the

ANCF rotor performance, the simulations also provided
downstream flow field wake predictions suitable for
acoustic analyses described in the next section.

It was known prior to CFD simulations that to fill the

viscous wake momentum deficit the injection velocity

must be higher than the relative flow velocity
(figure 4a). That is since the injection slot height must

necessarily be less the wake thickness. The design mass
flow distribution was required to weighted to the tip
necessitating an increasing slot thickness with span as
shown in figure 4b.

Aeroacoustic Analysis of the Design of the Trailing
Edge Blowing Fan

To estimate the noise benefits of the proposed design
for rotor trailing edge blowing, the aeroacoustic

performance of the ANCF with and without trailing
edge blowing was analyzed using the V07211 code prior
to the test. For a given rotor gust input (i.e., fan wakes),
the V072 code computes the three-dimensional acoustic

response of the stator vanes to an incident gust on a
harmonic basis. The code utilizes simplified
descriptions of the rotor and stator geometry and
aerodynamics to provide estimates of the acoustic mode
levels produced by the interaction of rotor wakes with

the stator vanes. The accuracy of the predictions can be
improved by utilizing measured or CFD-based three-
dimensional descriptions of the rotor wake. 1: CFD-
based wakes generated as part of the "blown" rotor

design process were used to provide the necessary gust
input to the V072 code for the results presented herein.

Mode levels produced by several different blowing
rates were computed. The predictions were carried out

for the first three harmonics of the blade passing
frequency tone with 0.0 (i.e., no-blowing), 1.9, 2.0, and
2.1% blowing rates. Based on these results, it was

thought that the 2.0% blowing along part of the span
would offer the optimal combination of aero and

acoustic benefits for rotor trailing edge blowing. In
assessing these theoretical benefits, no consideration

was given to the potential broadband noise impact of
the rotor trailing edge blowing (e.g., vortex shedding
from a blunt trailing edge). Neither was the serf-noise
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thatmightbeproducedbytheunconventionaltrailing
edgedesignof theslottedtrailingedgeconsideredin
theanalysis.

Data Acquisition Methodology

A schematic of the ANCF with measurement locations

is shown in figure 5.

Flow and Performance

A radial rake with total pressure probes and a traversing
static pressure probe, both located at the duct exit plane,
were used to compute the mass flow as a function of

corrected rpm (rpmc). The mass flow at a given rpmc
was used to determine the percentage blowing rate. The
bulk Mach number used for mode power levels at the
inlet, rotor, and exhaust duct planes was calculated from
the mass flow. The fan controller provided horsepower
and torque. These data are presented on figure 6.

Hotwire

Two component hotwire data (axial and tangential)
were acquired one rotor chord (5 in.) behind the rotor at

15 to 25 radial positions. Hotwire data at 1800 rpm for
the baseline rotor, self-blowing, and optimum-blowing
cases were acquired.

Hotwire time histories were acquired synchronous to

the shaft rotation at 640 samples-per-revolution for
500 revolutions. The two-component time histories

were converted to velocity and flow angle using a
2-dimensional fourth-order polynomial curve fit
obtained from an off-line calibration in a free jet over
the expected experiment velocity and flow angles. This
calibration was at a single temperature. This

temperature was fixed (--70 °F) due to the shop air
delivery system.

The velocity and flow angle as a function of time were
time-domain-averaged over a complete revolution, then

further averaged over a single blade passage
(40 points), and finally fully circumferentially averaged
to obtain the mean flow values.

The physical noise generation mechanism is the

unsteady upwash on the stator vane. The upwash is

defined as the fluctuation in the normal velocity vector.
Here it is defined as:

Ur(i ) -- Vr(i)*cos[(Xr(i)___r ] (1)

where

U = the upwash

V = the flow velocity

¢z = the flow angle

[3 = the stator vane angle

r = denotes a fixed radial position

i = position in the wake passage
Typically, voltage values obtained from a hotwire must
be corrected if the experimental temperature is different

from the calibration. The experimental temperature is
often not known exactly due to limitations in placement
of a temperature measurement device. In addition, the
temperature may vary in any of the dimensions hotwire

data is acquired. Generally, this is not a major cause for
concern since (1) the temperature variation during the
500 revolutions acquired is small; (2) the exact mean

values are of less concern than relative or fluctuating
values. Therefore, a single bulk experimental
temperature is often used to correct all voltage
measurements in a given run.

Using a single temperature across the entire revolution

was unacceptable in this case because of the significant
temperature rise in the injected air. The fan drew air

from ambient conditions and had a small (~1 to 2 °F)
rise. However, the compressor that supplied the injected
air had a (30 to 40 °F) temperature rise. In addition, the
large temperature difference between the calibration

(-70 °F) and the experiment (~30 to 40 °F) is probably
greater than can be accurately adjusted by the standard
temperature correction.

Therefore the two overheat method 13 was used to

determine the true velocity and temperature across a
passage. The hotwire probe was calibrated and data
acquired behind the rotor at two overheat ratios. Data

were processed and a temperature profile due to the
injection of the hotter air was assumed. The reduction

procedure outlined earlier was modified by assuming
the temperature profile across each blade wake at a
given radial location due to injection was identical

(i.e., no blade-to-blade variation in the injected profile.)
The assumed temperature correction was applied to
each overheat data set independently. The passage-

averaged velocity was calculated based on applying the
correction from the temperature profile across the

passage (40 points). The velocity at a given point in the
passage from each overheat data set was compared. The
temperature at that given point in the circumferential
passage was adjusted by iteration until the velocities

from each overheat data set agreed to within 0.5 fps.
Thus, passage averaged velocity and temperature

profiles were obtained from the reduction process
simultaneously.

Figure 7 shows the results with bulk temperature
correction and iterated passage-averaged temperature
correction for a typical radial location of self-blowing
and optimum-blowing cases. The significant
temperature rise in the wake changes the reduced
velocity profile substantially when compared to the
uncorrected, presumably inaccurate, profile obtained

using a constant temperature across the passage profile.

NASA/TM--2002-211559 4



Theself-blowingcasebroughtair into thepassages
throughaductwhoseinletwas10feetbelowtheduct
centerline.From operationalexperience,thereare
knownto besignificantverticaltemperaturegradients
insidetheAAPLfacility.Theiterationprocessindicates
thatthetemperaturein thewakeis indeedcooler,to a
maximumof-5 °Fcoolernearthewakecenterline.

Fortheblowingcase,it is expectedthatthereis a
temperaturerisein the wake.Theiterativemethod
indicatedthat the peakrise is -4.5 °F nearthe
centerline.In addition,thevariationin thewakeresults
in an iterativelyconvergedvelocity that has a
significantlydifferentcharacteristicthanthevelocity
profilefromeitheroverheatratio.Thepresumedactual
velocityprofile is overblown,a characteristicnot
indicatedfromtheunadjustedprofiles.In addition,both
caseshavenearlyidentical(-11.5°F)bulktemperature
increasesthat are probablydue to the error in
temperaturethatarisefromthedifferentlocationsofthe
hotwireandthetemperaturemeasurementdevice;anda
systematicerrorinthetemperaturecorrectionduetothe
large differencebetweenthe calibrationand the
experiment.

Theseadjustmentsproducephysicallyreasonable
results, though unconfirmedby independent
measurement.However,it is notedthattheanalytical
profilesolution(seeComparisontoAnalyticalResults
section)for theoptimum-blowingcaseispredictedto
beslightlyoverblown.Theadjustedprofilematchesthis
profilebetter.The constanttemperaturecorrection
derivedin theinviscidportionof thevelocityprofile
indicatesthe correctionis valid. In addition,the
adjustmentsare similaracrossa wide varietyof
conditions.Therefore,allhotwiredatapresentedherein
arepresentedwiththisiterativelyadjustedvelocityand
temperatureprofile.

Surface Pressures

Unsteady stator vane surface pressures were also
acquired only at 1800 rpm for the baseline rotor and

optimum blowing rate. The suction and pressure side of
a single stator vane were each instrumented with

30 microphones as detailed in figure 8. The
microphones were flush mounted on the surfaces and

distributed along three span locations (r/R = 0.49, 0.74,
and 0.91) and a radial line at 20% chord.

The time histories were acquired synchronous to the
shaft rotation at 256 samples-per-revolution for
500 revolutions. A frequency domain averaged FFT
with an ensemble length of five revolutions was
obtained from the time histories. The harmonics of the

blade passing frequency up to the Nyquist frequency
were obtained from the spectra, with the first three
harmonics being of the most interest. The tonal

component of the unsteady surface pressure has been
demonstrated TM to be directly related to the acoustic
levels.

Rotating Rake

The rotating rake instrumentation system provides a
complete map of the duct modal signature at 1BPF,
2BPF, and 3BPF for either the inlet or exhaust duct.

The circumferential modes arise from a Doppler
induced frequency shift due to the unique and discrete
rotation rate of each m-order. Radial modes (n) are
computed from a least squares data fit of the radial
pressure profile using hardwall Bessel functions as the
basis functions. 15Rotating rake data were acquired for

the entire fan speed range and blowing rates.

The modal data from the rotating rake will be presented
in 3-D format. The base plane axes are m- and n-order,
and the vertical value axis in the PWL in the (m,n)
mode. The mode power level is the sum of all cut-on

rotor-stator interaction modes. Along the wall of the m-

order axis the sum of all the radials provides the power
in that circumferential mode. The sum of all provides
the PWL in the harmonic presented. The typical 3-D
chart provides information as to the dominant modes
present, usually those due to the rotor-stator interaction.

Of secondary interest, are all other modes that may be
due to inflow distortions (often called extraneous
modes). Thus, a table for each 3-D chart will be

presented to indicate the total power in the harmonic,
the total power in just the rotor-stator interaction
mode(s), and the power in the extraneous modes.

The Tyler-Sofrin rotor-stator modes 16 expected with
16 blades and 14 stators with their cut-on rotational

speeds are presented on figure 10.

Farfield

Farfield acoustic data were also acquired over the entire

range blowing rates and fan speeds. Twenty-eight
microphones were distributed along an arc of
approximately 40 ft. radius with 5° increments.

Figure 10 provides the farfield microphone locations.

Data were synchronously sampled at 256 sample-per-
revolution and were obtained by frequency domain five
revolution ensembles. Tonal Sound Pressure Level

(SPL) directivity was obtained at each blade passing
harmonic. The SPL directivity was integrated over the
directivity angle assuming constant SPL over the
azimuthal angle to obtain the tone PWL.

Experimental Results

The rotating rake acoustic data was aCquired first to
determine the optimum-blowing rate. The optimum
blowing rate was determined by the minimum of the
summation of the first three tone PWLs. However, the
data is presented from the noise generating mechanism

to the ultimate metric, the farfield directivity.

NASA/TMm2002-211559 5



The designgoal was to reducethe rotor-stator
interactionmodeatthefanbladepassingfrequencies.
Thiswasdeterminedbycomparingthelevelsfor the
first threeharmonicsfor a givenblowingrateand
comparingtothebaseline.Unlessotherwisementioned
theresultsareforfull spanblowing.

Rotor Wake

The circumferentially averaged mean values for

velocity and flow angle as a function of radial span are
presented in figure 11. These data are taken one rotor

chord behind the rotor in the plane of the stator leading
edge, although the stators are not present. Three basic

conditions are presented: (a) rotors with trailing edge
inserts installed, (b) the "self-blowing" case (0.6%
blowing rate), (c) optimum-blowing of 1.8%. The

baseline rotor velocity profile is reasonably uniform.
The velocity profile with self-blowing also appears to
be more uneven compared to that with inserts. This is
probably due to the centripetal forces that create the

self-blowing result in an un-even flow from the trailing
edge, as well as a possibility of slight flow circulation

between the passages. The self-blowing rate appears to
reduce the velocity at the inner portion of the span. The
velocity profile for the optimum-blowing rate is also
similarly reduced at the inner span. Integrating the
mean velocity profile along the radial direction for the

case with inserts and comparing to the blowing cases
indicates a slight decrease in overall mass flow (-0.8%)
with self blowing; and a increase in mass flow (1.4%)
with optimum blowing. The overall mass flow has been

increased with optimum blowing, approximately the
amount that has been injected.

The change in profile may be due to the blunt trailing
edge causing vortex shedding or flow separation from
the blade, which has been noted to reduce the mean
flow. _ It is likely that the blowing prevents this

undesirable flow from forming. This is especially true
near the tip. However, by design, less mass flow is
directed to the inner span. It is possible that in the inner

span, vortex shedding/flow separation is occurring,
resulting in the lower mean velocity. There is less

point-to-point variation along the radial profile with the
application optimum blowing due to the positive mass
flow not allowing the circulation between passages. The
angle profiles are similar for all three cases; with

perhaps a slight decrease (~1 to 2°) in the turning angle
as blowing is increased.

Hotwire measurements were taken behind the rotor when the trailing
edge was fully taped, creating a blunt trailing edge. These
measurements showed a 5 to 10 fps drop in the velocity profile across
the span. The trailing edge taped rotor was judged unsuitable for an
experimental baseline, but may have provided insights into the results
with blowing.

The passage averaged circumferential velocity, flow
angle, and upwash velocity as a function of radial

position are presented in figure 12 as contour plots.
Selected radial profiles from the circumferential

passage are shown in figure 13. The self-blowing case

actually increases the velocity deficit. This is probably
due to the thickness of trailing edge (compared to the
sharp trailing edge) creating a thick wake that the low

blowing rate does not fill. The optimum-blowing rate
actually over fills the wake, or over-blows, at radial

stations from about 50% to the near the tip. The hub

separation is greater with the thicker trailing edge,
which is not remedied by increased blowing. The wake

angle deviation is affected by blowing. The flow angle
with self-blowing is somewhat less than with the

inserts. The flow angle resulting when optimum
blowing is applied is considerably less. The flow
deviation reverses direction when the wake is

overfilled. The result is that the upwash as calculated
from Eq. (1) is modestly reduced over most of the

radial span when self-blowing is applied, and
considerably reduced with optimum blowing.

Stator Vane Surface Pressures

The unsteady stator vane surface pressures for the first

three harmonics at the 20% chord line are presented in
figure 14 for the suction side and figure 15 for the
pressure side. The unsteady pressure at the 20% chord
line has been shown to be the major contributor to tone
noise for this fan and indicative of the overall levels. 13
The vane surface SPL for the case with the inserts and

with self-blowing are approximately the same for all

three harmonics. The surface SPLs with optimum
blowing applied are significantly lower, especially near
the tip. This is the case for both the suction and pressure
sides of the stator vane. The optimum-blowing case
shows an extreme minimum and a phase reversal near
the 50% span. This location corresponds to the

transition between under- and over-blowing indicated
by the hotwire.

Acoustic Duct Modes

Figures 16, 17, and 18 show the modal decomposition
for the inlet and exhaust for the first three fan

harmonics. At BPF, in the inlet, with optimum-blowing
a reduction in m=2 of 11.5 dB occurs. In the exhaust a

decrease of 5.0 dB is noted with self-blowing, but an
increase of 0.1 dB results when optimum-blowing is
applied.

The second harmonic rotor-stator mode (m=4, with two

radials) reductions are 7.2 dB (inlet) and dB 11.4
(exhaust). It also becomes apparent that the non-rotor
stator modes are reduced 1.5 dB (inlet) and 6.1 dB
(exhaust). The overall harmonic PWL is reduced 6.4 dB
and 10.4 dB.

NASA/TM--2002-211559 6



Thethirdharmonicrotor-statorinteractionmodesare
reduced11.8and19.4dB with theapplicationof
optimumblowing.For themostpartall modesare
reducedto themeasurementnoisefloor.Theoverall
PWLreductionsin the3rdharmonicare13.6dBand
18.5dBin theinletandexhaustducts,respectively.

Thesignificanceis thatareductionin therotor-stator
modehasanearly1-to-1dBimpactontheharmonic
PWL.Totheextentthe'extraneous'modesaredueto
theblade-to-bladerotorwakedifferencesinteracting
withthestatorratherthandistortionsin theinflowfield
reactingwiththerotorthisis anexpected,butuseful
result.

Theeffectof varyingthe blowingratefrom self-
blowing(0.6%)to2.0%ispresentedin figure19.The
lack of effectivenessat BPF maybedue to that
harmonicbeingaresultofthestrongtip flow,whichis
notmodifiedwiththeapplicationofblowing.A second
possibilityis theBPFlevelsarefromtheinteractionof
therotorpotentialfieldvariationratherthanthewake
deficitinteractionwiththestatorvane.At the second
and third harmonics the clear minimum at 1.8% is

noted. Also, note that this fan is dominated by the (m,0)

modes. Blowing reduces all radial modes reasonably
uniformly.

The effect of blowing along only part of the rotor span
was investigated by taping the trailing edge except for
20% span from the tip, with the results shown in
figure 20. It is seen that the minimum occurs at a lower

blowing rate of about 1.1%. (It is known that the design
full-span flow rate is heavily tip weighted.) The
reductions are approximately the same or a few dB less
compared to full span blowing at 1.8%. This is because

the ANCF is dominated by the (m,0) modes and tilting
the wake at 20% tip couples very well to the tip-
dominated (m,0) modes. The reduction in the overall m-

order is primarily due to reduction in the (m,0) mode.
Unlike the full span blowing case, the higher modes are
mostly unaffected by tip blowing. This indicates that

carefully selected blowing at only spans that couple to
dominant acoustics may result in lower blowing rates to
accomplish similar reductions. However, the taped
section of the rotor was effectively a blunt trailing edge
that created enormous broadband noise,** which will be

briefly described in the farfield results. If part-span

Note: farfield measurement were taken with two other rotor trailing
edge conditions: (i) the rotor trailing edge completely taped, and
(ii) the duct inflow to the blowing system completely blocked
resulting in no net mass flow through the blade. These configurations
resulted in modest changes in the tones but tremendous (-20 dB)
increases in the farfield broadband SPL at certain frequencies as
would be expected**from what is effectively a blunt trailing edge. It
is only mentioned here to indicate that caution must be exercised
when designing the rotor blade to anticipate blowing failure or part-
span blowing conditions.

blowing is to be useful, resulting in lower blowing
rates, very careful design to condition will be required.

The effect of blowing at other fan speeds resulted in
similar mode level versus blowing rate profiles.
Figure 21 compares interaction mode PWLs from the

baseline case to the levels at the optimum blowing, as
determine for each speed and harmonic. The maximum

reduction generally occurs at 1.8%. A few cases, mostly
BPF in the exhaust, better reductions are obtained at
lower blowing rates.

Farfield Directivity

The farfield directivities for the first three harmonics
from 0.6 to 2.0% are presented in figure 21. For each

blowing rate, the tonal directivity is plotted along with
the tonal directivity with rotor trailing edge inserts for
comparison. The integrated tone PWL is noted on the
plot. The farfield results confirm the in-duct mode

measurements. For example, note the directivity for the
first harmonic at optimum blowing (1.8%): the inlet

lobe is significantly lowered by 7.5 dB SPL at the peak
of the lobe, but an increase of 1.2 dB SPL at the exhaust

lobe peak. This matches the in-duct results very well.
However, the farfield directivity indicates that 1.6%
blowing produced greater reduction than 1.8% for all

three harmonics. This is partially a result of uncertainty
in the blowing mass flow measurement. The uncertainty
in the blowing ratio is estimated to be about _+0.05%.
An additional factor is that the presence of the exhaust

rake may slightly back-pressure the fan effecting the
measurements taken with the rotating rake. It may also
be that finer blowing rate increments would identify a
minimum that both sets of measurements agree upon.

Comparative Tonal Summary

The reductions in the tone harmonics calculated or
measured from the different measurement methods are

presented in figure 23. First, the average upwash across
the radial span as measured by the hotwire is calculated

from the FFT of the passage-averaged upwash. This is
expected to correlate to the duct mode PWLs as

outlined in references 2 and 11. The optimum-blowing
harmonic upwash is referenced to that calculated
behind the rotor with .inserts. A reduction in the

harmonic upwash of 8 to 10 dB is calculated. Next, the
average SPL for all vane microphones for the first three
harmonics is computed. This metric has been shown in

reference 13, for this fan only, to correlative very well
to the in-duct mode PWLs. The measured in-duct and
farfield PWLs are also presented. Overall, the trends

and comparisons for each measurement method agree
and compliment each other very well.
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Comparison to Analytical Results

The other goal of this project was to validate the flow

and acoustic codes used as design tools. Comparisons
of the experimental to the predicted data are presented
in this section. The comparisons between the

experimental data and CFD results are not at exactly
matching conditions primarily because the hotwire data

were acquired at 1 rotor chord (5 in.) behind the rotor,
while the CFD results are 4.82 in. downstream of the

rotor stacking axis, which corresponds to the CFD grid
exit. That is, the CFD results are 2.7 in. upstream of the
hotwire. Furthermore, for the baseline comparisons, the

experimental results are from a sharp trailing edge,
while that CFD results are from a rotor with a thicker

trailing edge, though with out modeling the vortex

shedding. Finally, it was decided to compare optimum-
blowing, to optimum-blowing as defined by the
separate methodologies, i.e., 1.8% experiment versus
2.0% CFD.

Performance

The CFD results predicted the baseline fan would

produce a mass flow of 131.7 lbm/sec at 2000 rpmc at
maximum absorbed horsepower. Experimentally
(interpolating figure 6), the fan produced 131.5 lbm/sec
at 1910 rpmc at 100% horsepower. It is speculated from
in-situ measurements that blade setting angle as
installed was slightly higher than designed.

Flow

The comparison of mean wake profile behind the rotor

is shown in figure 24 for the baseline. The turning angle
agreement is excellent, with the code over predicting
the angle by less than 1 to 2 degrees. The mean velocity
comparison shows agreement within 5 fps for the
baseline rotor, about 10 fps with blowing applied. More

notable is the character of the profile. The code predicts
a higher velocity at the hub. The experimental profile
showed a uniform profile with no blowing, and
noticeable unloading at the hub with blowing applied.

Figure 25 presents the wake profiles at the selected
radial positions for the baseline rotor. In general, the
code over-predicts the velocity deficits and the
deviation angle. This is probably because the
measurements correspond to a location further
downstream, but also because the Baldwin-Lomax CFD

may not have enough turbulent mixing 17in the wake.
The phase of the CFD results was adjusted to account
for convection by the mean swirl.

The comparisons in the wake profiles with blowing
applied are shown in figure 26. The code predicted the
slight over-blowing near tip-ward and slight under-
blowing hub-ward. The code shows less deviation than

was measured experimentally. This may be a result of
uneven radial distribution in the experiment.

Acoustic

The predicted harmonic tone levels from V072 using
the CFD results are compared to those measured by the
rotating rake in figure 27. The absolute levels for the

baseline rotor and with blowing applied as well as the
reductions obtained with blowing are presented. In
general, the reductions due to blowing are estimated

accurately, except for exhaust BPF. The analytical
results predicted substantial reduction that was not
measured experimentally in the exhaust.

Conclusions

The rotor blades of a low-speed fan were designed to
reduce the rotor-stator interaction noise through the use
of rotor trailing edge blowing. Composite hollow rotor
blades were designed with internal passages to deliver
the injected flow at the design pressure and flow rate to

fill the wake momentum deficit. CFD and analytical
codes were developed and used as tools to optimize the
design.

Types of data acquired were: (i) two-component
hotwire behind the rotor, (ii) unsteady surface pressures
on a stator vane, (iii) acoustic duct modes, and
(iv) farfield directivity. These data were analyzed for
tonal character.

The rotating rake tonal analysis indicated that the

viscous wake is essentially filled at a blowing rate of
1.8% of the fan mass flow rate. The optimum-blowing
rate as defined by the minimum acoustic levels was

between 1.6 and 1.8%. Blowing had modest effects on

the BPF tone in the exhaust. Blowing significantly
reduced all rotor-stator interaction modes and other
extraneous modes at the second and third harmonics.
Acoustic tone power levels in the inlet and exhaust
were reduced 11.5 and --0.1, 7.2 and 11.4, 11.8 and
19.4 PWL dB, respectively, at the first three harmonics

of the Blade Passing Frequency. The farfield directivity
confirmed the reductions obtained. The reductions

obtained in the farfield were 5.4 (1BPF), 10.6 (2BPF),
and 12.4 (3BPF) dB tone PWL.

Reduction in the fan tone levels by tilling the rotor
viscous wake through trailing edge blowing has been
demonstrated to achieve substantial tone reduction at
1.6 to 1.8% of the fan mass flow rate. Indirect methods
indicate that broadband reduction of rotor-stator

interaction noise may result.

The design codes used in this work were validated

as reliable tools for predicting the behavior of trailing
edge blowing for a low speed fan. Simulations of
the TERB ANCF rotor using the RVC3D code,
augmented with a one-dimensional flow model for

the TERB flow characteristics, predicted the

experimentally values very well. Using these results

NASA/TMm2002-211559 8



asinputto theV072 acoustic code predicted the noise
reductions obtained reasonably well.

Filling the viscous wake of the rotor through trailing
edge blowing has been shown to be an effective method
to reduce rotor-stator interaction tones.

Future Work

Preliminary analysis of the fan wakes and stator vane

unsteady pressures indicate that there may also be a

broadband noise reduction benefit from trailing edge
blowing. This will be the subject of a follow-on paper.
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(a)Aero-AcousticPropulsionLaboratory

(b)ActiveNoiseControlFan

TrailingEdge
Blowing

ii_̧
i!

i_ ,_,__

(c) Trailing Edge Rotor Blowing Installation viewed from downstream of fan

Figure 1. Experimental apparatus
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(a)ANCFHollowFanBladewithpressuresideskinremoved

(b)Explodedviewshowingbladecomponents.

Figure2.DetailsofCompositeTrailingEdgeRotorBlade
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MASS fLOW ......................2.6]bs3s(2% TotalMassFlow)
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C_cumferenfial
Plenum Shai_

(a) Rotor/shaft assembly, yellow arrows indicate injection air supply

' IMPELLER

(b) Forward shaft components

Figure 3. Schematic of ANCF showing air delivery components
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